A Distributed Quantum-Behaved Particle Swarm Optimization Using Opposition-Based Learning on Spark for Large-Scale Optimization Problem
نویسندگان
چکیده
منابع مشابه
Using quantum-behaved particle swarm optimization for portfolio selection problem
One of the popular methods for optimizing combinational problems such as portfolio selection problem is swarmbased methods. In this paper, we have proposed an approach based on Quantum-Behaved Particle Swarm Optimization (QPSO) for the portfolio selection problem. The particle swarm optimization (PSO) is a well-known population-based swarm intelligence algorithm. QPSO is also proposed by combin...
متن کاملA Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization
Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by in...
متن کاملImproved Quantum-Behaved Particle Swarm Optimization
To enhance the performance of quantum-behaved PSO, some improvements are proposed. First, an encoding method based on the Bloch sphere is presented. In this method, each particle carries three groups of Bloch coordinates of qubits, and these coordinates are actually the approximate solutions. The particles are updated by rotating qubits about an axis on the Bloch sphere, which can simultaneousl...
متن کاملEnhancing particle swarm optimization using generalized opposition-based learning
Particle swarm optimization (PSO) has been shown to yield good performance for solving various optimization problems. However, it tends to suffer from premature convergence when solving complex problems. This paper presents an enhanced PSO algorithm called GOPSO, which employs generalized opposition-based learning (GOBL) and Cauchy mutation to overcome this problem. GOBL can provide a faster co...
متن کاملAn Efficient Quantum-Behaved Particle Swarm Optimization for Multiprocessor Scheduling
Quantum-behaved particle swarm optimization (QPSO) is employed to deal with multiprocessor scheduling problem (MSP), which speeds the convergence and has few parameters to control. We combine the QPSO search technique with list scheduling to improve the solution quality in short time. At the same time, we produce the solution based on the problem-space heuristic. Several benchmark instances are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2020
ISSN: 2227-7390
DOI: 10.3390/math8111860